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Summary. We investigate the problem of optimizing, adapting, and untangling a surface tri-
angulation with high-order accuracy, so that the resulting mesh has sufficient accuracy for
high-order numerical methods, such as finite element methods with quadratic or cubic ele-
ments or generalized finite difference methods. We show that low-order remeshing, which
may preserve the “shape” of the surface, can undermine the order of accuracy or even cause
non-convergence of numerical computations. In addition, most existing methods are incapable
of accurately remeshing surface meshes with inverted elements. We describe a remeshing strat-
egy that can produce high-quality triangular meshes, while untangling mildly folded triangles
and preserving the geometry to high-order accuracy. Our approach extends our earlier work
on high-order surface reconstruction and mesh optimization. We present the theoretical frame-
work of our methods, experimental comparisons against other methods, and demonstrate its
utilization in accurate solutions for geometric partial differential equations on triangulated
surfaces.
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1 Introduction

Surface meshing and remeshing are important subjects in geometry processing, mesh
generation, and numerical solutions of partial differential equations with complex
geometry. In the past, researchers have mostly focused on generating piecewise lin-
ear (or bilinear) meshes (such as [5]), which have only up to second-order accuracy.
In recent years, high-order (third- or higher-order) surface meshing and remeshing
(using piecewise quadratic or higher-degree elements or polynomial patches) have
become increasingly important. The fundamental reason behind this trend is sim-
ple: high-order numerical methods require the same or higher order accuracy for the
geometry. With only piecewise linear approximations, the discretizations of differ-
ential quantities (such as normals or curvatures) or the solutions of the differential
? Corresponding author. Email: xiangmin.jiao@stonybrook.edu.
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(a) Initial mesh with high-valence vertices. (b) Optimized mesh with high accuracy.

Fig. 1. An example of remeshing a spherical harmonic surface to produce a high-quality mesh
while preserving geometric accuracy. Images are color coded by mean curvatures. The initial
mesh (left) has very high-valence vertices (as highlighted in the inlet, at the poles of the spher-
ical coordinate system) and a minimum angle of 3.2 degrees. The optimized mesh (right) has
a minimum angle of 29.9 degrees, with accurate surface normals and curvatures.

equations may not achieve the desired order of accuracy, and sometimes may not
converge at all. The problem is even more demanding in the problems with evolv-
ing geometry, where the surface mesh must be adapted, and sometimes needs to be
untangled to remove mildly (or nearly) folded triangles.2

In this paper, we investigate the problem of optimizing, adapting, and untangling
a surface mesh with high-order accurate nodal positions,3 so that the new mesh can
preserve the order of accuracy of numerical methods, such as finite element methods
with quadratic or cubic elements and generalized finite difference methods [1, 13].
We perform all these operations with only the mesh as input (i.e., without accessing
a CAD model). Fig. 1 shows an example of optimizing a smooth surface while main-
taining the number of vertices. Our procedure not only improves the mesh quality
(in this case, eliminating the high-valence4 vertices and improving the minimum an-
gle from 3.2 degrees to 29.9 degrees), but also preserves the geometry to third-order
accuracy, so that both surface normals and curvatures can converge after remeshing.
2 On a smooth surface mesh, we consider a triangle to be folded (and sometimes said to be

inverted) if its normal direction is more than 90 degrees off from its neighborhood. In a
local parameterization, such triangles tend to have a negative Jacobian, which could under-
mine the accuracy and stability of numerical computations. We consider a folding is “mild”
if the area of folded triangle is small compared to the area of its one-ring neighborhood.

3 By high-order accuracy, we mean that the errors in the vertex position converge at a rate of
third or higher order with respect to some measure of edge lengths under mesh refinement.
Note that high-order accuracy does not imply high degree of continuity, and conversely
high degree of continuity does not imply high-order accuracy either.

4 The valence of a vertex is the number of its incident edges, which is equal to the number of
incident triangles for a closed surface mesh.
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This work is based on, and also a major extension of, our previous works on
variational mesh optimization [11] and high-order surface reconstructions [10]. The
contributions of the work are as follows. First, we combine our mesh optimization
technique with mesh flipping to improve mesh quality even further, along with edge
splitting and edge contraction to refine or coarsen meshes. Second, we couple our
high-order surface reconstruction techniques with mesh optimization and adaption,
to preserve the accuracy of geometry to high-order accuracy. Third, we improve our
method to allow untangling mildly folded triangles, to improve the accuracy, stabil-
ity, and robustness of mesh-based geometry processing and numerical computations.
Finally, we verify high-order convergence of various numerical computations with
our adapted meshes, and perform a quantitative comparison with other alternatives.

The remainder of the paper is organized as follows. Section 2 reviews some back-
ground knowledge and related work, including high-order surface reconstruction and
generalized finite-difference schemes over unstructured meshes. Section 3 describes
our method for improving mesh quality by combining variational mesh optimization
with edge flipping, while preserving the numerical accuracy to high order. Section 4
extends our method to adapt the surface mesh and untangle mildly or nearly folded
triangles, while preserving the geometry to high-order accuracy. Section 5 presents
some numerical experiments with our remeshing framework to demonstrate its ef-
fectiveness in improving mesh quality and preserving accuracy, and reports a com-
parative study with other methods. Section 6 presents an application of our method
in accurate numerical solutions of a moving mesh problem. Section 7 concludes the
paper with a discussion.

2 Background and Related Work

We start by reviewing some background for high-order surface remeshing. We first
motivate the problem by giving a brief overview of two types of numerical methods
over unstructured meshes: finite element methods and generalized finite difference
methods. We then review techniques for high-order surface reconstruction, which are
closely related to generalized finite difference methods.

2.1 High-Order Finite Element Methods

The most well-known numerical methods on unstructured meshes are probably fi-
nite element methods. When using isoparametric elements [8], these methods use
quadratic or cubic interpolation within each element for both representing the geom-
etry and approximating the solutions. Additional nodes are required within each el-
ement to construct these interpolations. For example in two dimensions, a quadratic
interpolation requires six points and a cubic interpolation requires ten points, so a
six-node triangle (three corners plus three edge mid-points) and a ten-node triangle
(three corners, two points along each edge, and the centroid) are used, respectively.
Higher than cubic interpolation is possible but is rarely used in practice.
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Generally speaking, a quadratic interpolation can approximate a function up to
third-order accuracy, and a cubic interpolation can approximate a function up to
fourth-order accuracy. However, this order of accuracy may not be attainable if any
part of the algorithm is low order, including the geometry. In particular, if linear
elements are used for approximating the surface, or if the nodal coordinates are only
second-order (or third-order) accurate, then the overall numerical method will be
limited to at most second-order (or third-order) accuracy, defeating the purpose of
using quadratic (or cubic) elements. For this reason, any remeshing of the surface
must be at least the same or higher order accurate than the order of the numerical
methods to be used. In [10], we described a refinement scheme to generate quadratic
or cubic surface meshes for high-order finite element methods from a given surface
mesh with piecewise linear elements but high-order accurate nodal positions.

2.2 Generalized Finite Difference Methods

Besides finite-element methods, another class of high-order method is the general-
ized finite difference methods, which have been gaining popularity in recent years.
Unlike the finite element methods, the generalized finite difference methods are
based on weighted least-squares approximations rather than interpolation, so they
have more flexibility in defining the stencils for numerical differentiation and in con-
structing local patches for numerical integration, which are the core computations in
most numerical discretizations of differential equations.

The generalized finite difference schemes are often used in meshless methods
[1, 13]. However, they also apply to unstructured meshes, where the mesh connectiv-
ity can be used as an aid for efficient construction of the stencils for computing least
squares approximations. For example, Jiao and co-authors have used a generalized fi-
nite difference scheme for computing normals and curvatures of triangulated surfaces
to high-order accuracy [12, 15]. Given a surface mesh, they constructed the stencils
of a center vertex as its k-ring and k.5-ring neighborhood, where k = 1, 2, 3, . . .
Let us define the 0-ring of a vertex as the vertex itself. Then, the k-ring vertices are
those share an edge with a vertex in the (k − 1)-ring, and the k.5-ring vertices are
those share a face with two vertices in the k-ring.5 Typically, it is advisory to use
the (d + 1)/2-ring for noise-free surfaces or (d/2 + 1)-ring for noisy surfaces, so
that the number of points in the stencil are about 1.5 to two times of the number of
coefficients for least-squares fittings. These stencils are based on mesh connectivity
alone. In addition, each point has an associated weight in the stencil in the weighted
least-squares formulation, which can be used to reduce the influence of points that
are far away from the center vertex or to filter out vertices that are on the opposite
side of a sharp feature. Compared to meshless methods, this approach allows much
more efficient construction of stencils and also avoids the issues of short circuiting
of stencils. We refer readers to [12, 15] for further details of the stencils.
5 The definition of half-rings for triangular meshes was introduced in [12]. Our definition

here is simpler than the original definition in [12], and it is better suited for quadrilateral
meshes as the definition in [10].
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We emphasize that the generalized finite difference methods use the mesh con-
nectivity for only defining the topology of the surface and for constructing the sten-
cils for least squares approximations. This is a major departure from the finite-
element methods, which uses the elements of the mesh to define the interpolation of
the geometry. In this paper, we focus on remeshing for generalized finite difference
methods. Our method produces high-quality, high-order accurate surface meshes, so
they can be refined using the procedure in [10] to obtain valid, quadratic or cubic
surface meshes for high-order finite element methods.

2.3 High-Order Surface Reconstruction

In order to obtain more accurate approximations to surfaces, we must first perform
high-order surface reconstructions, i.e., to reconstruct a high-order surface repre-
sentation from a given surface mesh, which is typically composed of triangles and/or
quadrilaterals. This surface reconstruction problem is closely related to the general-
ized finite-difference schemes. As in the generalized finite difference methods, we
consider the mesh only as the definition of the topology of the surface, rather than
using its triangles or quadrilaterals as the definition of the geometry. Then at each
vertex, a weighted least squares fitting is constructed using the stencil similar to
generalized finite-difference schemes. However, one additional requirement of the
surface reconstruction is the continuity of the constructed surface. In this paper, we
will utilize the Weighted Averaging of Local Fittings (WALF) scheme [10], which
blends the weighted least squares fittings using the finite-element shape functions
to achieve C0 continuity while preserving high-order accuracy. We will give more
details about WALF in Section 3.2.

2.4 Other Related Works

Besides WALF, in [10] Jiao and Wang investigated another approach called contin-
uous moving frames (CMF). Both WALF and CMF are based on the assumptions
that the vertices of the mesh accurately sample the surface, the faces of the mesh
correctly specify the topology of the surface, and utilize the numerical techniques of
weighted least squares approximations and piecewise polynomial fittings. They ap-
ply to surface meshes composed of triangles and/or quadrilaterals, and also to curves
(such as ridge curves on a surface). We choose to base our method on WALF be-
cause of its simplicity and better efficiency, and because it delivers similar accuracy
as CMF up to sixth order. In [10], they also compared WALF and CMF with some
other alternatives, including moving least squares [4] and G1 reconstructions [14].
Those methods did not deliver good accuracy in our tests. Therefore, we base our
present work on WALF.

It is worth mentioning of a recent work of the isogeometric analysis [3], which
uses smooth basis functions (such as NURBS) used in geometric modeling as basis
functions for approximating the solutions. This idea shares many similarities with
isoparametric elements, but the the geometry and the solutions are C1 continuous,
which are particularly desirable for certain classes of problems, such as modeling of
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thin shells and contact problems. Our focus for this work is on finite element and
generalized finite difference methods, so we consider only reconstructing high-order
accurate polynomial patches, instead of NURBS for isogeometric analysis.

3 High-Order Surface Mesh Optimization

In this section, we describe our algorithm for improving mesh quality of a triangular
surface mesh, while preserving its geometry to high-order accuracy.

3.1 Mesh Quality Improvement

Our approach is based on the variational optimization method described in [11],
which minimizes a convex energy defined based on isometry. However, unlike the
technique in [11], which maintained the same mesh connectivity, we also modify the
mesh connectivity using edge flipping in this paper, so that the energy can be further
decreased, and the mesh quality can be further improved.

Variational Mesh Optimization by Vertex Movement

To improve mesh quality, we minimize the total energy defined based on a discrete
isometric mapping from an ideal reference triangle to an actual triangle. For simplic-
ity, in this paper we consider the simplest case of isotropic surface meshes by using
equilateral triangles as the reference to optimize only the angles. Given a triangle
τ ≡ x1x2x3 in R3, let θi denote the angle at the ith vertex of the ideal triangle, li
denote the opposite edge of the ith vertex of the actual triangle, and A denote twice
the area of triangle, respectively. The energy for this triangle is

Eθ(τ) =
ω

A

3∑
i=1

‖li‖2, (1)

where ω = 1/
√
3. To improve the quality of a mesh M , we minimize the total

energy
∑
τ∈M Eθ(τ). We achieve this using an iterative procedure similar to the

block-Jacobi solver for Newton’s method. In particular, we compute the gradient
and Hessian of Eθ over all the triangles, and obtain the gradient and Hessian at
each vertex by adding their corresponding values at its incident triangles. For surface
meshes, we then restrict the gradient and Hessian onto the tangent space, and then
compute the displacements for each vertex using one step of Newton’s method. To
avoid mesh folding, we determine a relaxation factor αv for each vertex and then add
αvdv to the vertex. For detailed description of the algorithm, see [11].

Connectivity Improvement by Edge Flipping

The energy (1) is convex with respect to the position of each vertex [11], and in prac-
tice the energy decreases close to the minimum quite rapidly. However, this minimum
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Fig. 2. Illustration of edge flipping.

can be further reduced if the mesh connectivity is allowed to change. We modify the
mesh connectivity using edge flipping, as illustrated in Fig. 2. In general, an edge
flipping should be performed only if it preserves the topology of the surface (in par-
ticular, the new edge must not have already existed in the mesh). In addition, we use
the following two additional criteria:

Energy-Reduction Edge Flipping: Flip an edge if it would decrease the sum of the
energy of its incident triangles.

Valence-Improvement Edge Flipping: Flip an edge if after flipping the difference
between the maximum and minimum valences among the vertices of the two
triangles is smaller than that before flipping.

The first strategy is a local strategy, and it is easy to understand. Its goal is simply to
reduce the energy for each edge flipping, and therefore the total energy would never
increase. The second strategy is non-local, and it may be counter-intuitive, because
such a flipping may in fact increase the energy. Its motivation is the following: For
a vertex in a mesh for a smooth surface, if a vertex has a too high (> 7) or too low
(< 5) valence, all its incident triangles are far from equilateral. Therefore, our strat-
egy is to decrease the gap between the maximum and minimum valences, so that the
energy in the whole neighborhood may be reduced. In our experience, repeatedly
performing valence-improvement edge flipping tend to produce a mesh without high
or low valences, and in turn allows much better mesh quality. In Fig. 1, the mesh was
optimized by the combination of these flipping strategies with variational mesh opti-
mization, to eliminate valence-40 vertices and obtain a mesh with valences between
5 and 7.

For each flipping strategy, we repeatedly perform the flipping until no further im-
provement is possible. Because valence-improvement edge flipping may not directly
improve mesh quality, we perform it before the variational mesh optimization, and
perform energy-reduction edge flipping after variational mesh optimization.

3.2 Achieving High-Order Accuracy

In our mesh optimization strategy, edge flipping does not change vertex position.
However, in the variational mesh optimization step, the vertices are moved within
the tangent space, which is in general only second-order accurate. To achieve high-
order accuracy, we must project the point onto a high-order surface reconstruction.
We reconstruct the high-order surface using the Weighted Averaging of Local Fittings
(WALF) scheme [10]. We now briefly describe the technique.
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Local Polynomial Fitting

Our high-order reconstruction is based on local polynomial fittings and weighted
least squares approximations. We first review local polynomial fittings, also known
as Taylor polynomials in numerical analysis [7]. We are primarily concerned with
surfaces, so the local fitting is basically an interpolation or approximation to a
neighborhood of a point P under a local parametrization with parameters u and
v, where P corresponds to u = 0 and v = 0. The polynomial fitting may be de-
fined over the global xyz coordinate system or a local uvw coordinate system. In
the former, the neighborhood of the surface is defined by the coordinate function
f(u, v) = [x(u, v), y(u, v), z(u, v)]. In the latter, assuming the uv-plane is approx-
imately parallel with the tangent plane of the surface at P , each point in the neigh-
borhood of the point can be transformed into a point [u, v, f(u, v)] (by a simple
translation and rotation), where f is known as the local height function.

Let u denote [u, v]T . Let ϕ(u) denote a smooth bivariable function, which may
be the local height function or the x, y, or z component of the coordinate function
for a parametric surface. Let cjk be a shorthand for ∂j+k

∂uj∂vk
ϕ(0). Let d be the desired

degree of the polynomial fitting, and it is typically small (typically no greater than 6
for stability reasons). Ifϕ(u) has d+1 continuous derivatives, it can be approximated
to (d+ 1)st order accuracy about the origin u0 = [0, 0]T by

ϕ(u) =

d∑
p=0

j+k=p∑
j,k≥0

cjk
ujvk

j!k!︸ ︷︷ ︸
Taylor polynomial

+

j+k=d+1∑
j,k≥0

c̃jk
ũj ṽk

j!k!︸ ︷︷ ︸
remainder

, (2)

where c̃jk = ∂j+k

∂uj∂vk
ϕ(ũ, ṽ), 0 ≤ ũ ≤ u, and 0 ≤ ṽ ≤ v.

Suppose we have a set of data points (ui, vi, ϕi) for i = 1, . . . ,m − 1, sampled
from a neighborhood near P on the surface. Substituting each given point into (2),
we obtain an approximate equation

d∑
p=0

j+k=p∑
j,k≥0

(
ujiv

k
i

j!k!

)
cjk ≈ ϕi, (3)

which has n = (d+ 1)(d+ 2)/2 unknowns (i.e., cjk for 0 ≤ j + k ≤ d, j ≥ 0 and
k ≥ 0), resulting in anm×n rectangular linear system. The local least squares poly-
nomial fitting provides us the theoretical foundation for high-order reconstruction of
surfaces, established by the following proposition [12]:

Proposition 1. Given a set of points [ui, vi, f̃i] that interpolate a smooth height func-
tion f or approximate f with an error ofO(hd+1), assume the point distribution and
the weighting matrix are independent of the mesh resolution, and the condition num-
ber of the linear system is bounded by some constant. The degree-d weighted least
squares fitting approximates cjk to O(hd−j−k+1).
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Weighted Averaging of Local Fittings (WALF)

The Weighted Averaging of Local Fittings (WALF) obtains a continuous approxima-
tion to the surface by a weighted averaging of the local fittings at the vertices. For
continuity, the weights used by the weighted averaging must be continuous over the
mesh. One such a choice is the barycentric coordinates of the vertices over each tri-
angle. Consider a triangle composed of vertices xi, i = 1, 2, 3, and any point p in
the triangle. For each vertex xi, we obtain a point qi for p from the local fitting
in the local uvw coordinate frame at xi, by projecting p onto the uv-plane. Let ξi,
i = 1, 2, 3 denote the barycentric coordinates of p within the triangle, with ξi ∈ [0, 1]

and
∑3
i=1 ξi = 1. We define

q(u) =

3∑
i=1

ξiqi(u) (4)

as the approximation to point p.
WALF constructs a C0 continuous surface, as can be shown using the proper-

ties of finite-element basis functions. Furthermore, under the same assumptions as
Proposition 1, we obtain the following property of WALF [10]:

Proposition 2. Given a mesh whose vertices approximate a smooth surface Γ with
an error of O(hd+1), the distance between each point on the WALF reconstructed
surface and its closest point on Γ is O(hd+1 + h6).

This proposition gives an upper bound of the error, and it shows that the error term
is indeed high order for d ≥ 1. The O(h6) term is due to the discrepancy of local
coordinate systems at different vertices. However, in most applications we expect
d < 6, so the total error would be dominated by the degree of polynomials used in
the least squares fitting.

4 High-Order Surface Mesh Adaption and Untangling

The method we described in the previous section has two limitations. First, it does
not change the number of vertices in the mesh. However, it may be necessary to
change the number of vertices for an evolving geometry. Second, it requires the ini-
tial surface mesh to have no inverted elements (i.e., no mesh folding), because our
energy function is infinite at a degenerate element, which forms a barrier to pre-
vent inverted elements to be untangled. However, it is not uncommon for the input
mesh to be mildly or nearly folded. As mentioned before we consider a triangle to
be inverted (i.e, folded) if its normal direction is more than 90 degrees off from its
neighborhood. The folding is considered “mild” if the area of folded triangle is small
compared to the area of its one-ring neighborhood. By untangling (or unfolding) we
mean resolving these folded triangles so that there are no folded triangles in the re-
sulting mesh. In this section, we further extend our techniques to accommodate mesh
adaption (refinement and coarsening) and mesh untangling.
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4.1 Mesh Refinement and Coarsening

We perform mesh adaption primarily using two operations: edge splitting and edge
contraction. Since edge contraction can revert an edge splitting, we must consider
the two operations together to ensure consistency.

Edge Splitting and Edge Contraction

First, let us consider edge splitting, which is the easier of the two. Given two adjacent
triangular elements, edge splitting inserts a new vertex on their shared edge. Similar
to the approach in [9], we consider two criteria to determine whether an edge requires
splitting:

Absolute Longness: The edge is the longest among its incident triangles and is
longer than a provided threshold L.

Relative Longness: The edge is longer than a desired edge length l (< L), one of
its opposite angles is close to π (greater than provided θl), and the shortest edge
among its incident triangles is no shorter than a provided threshold s (< l).

The process of edge splitting abides by this criterion to help optimize element quality
and consistency in size. The process of edge splitting occurs in decreasing order of
edge lengths throughout the mesh.

For mesh coarsening, we perform edge contraction, which removes a vertex. As
in [9], we consider the following four criteria to determine whether an edge should
be contracted:

Absolute small angle: the opposite angle in an incident triangle of the edge in ques-
tion is smaller than a threshold θs, and the triangle’s longest edge is shorter than
a desired edge length l.

Relative shortness: The edge in question is shorter than a fraction r of the longest
edge of its incident triangles.

Absolute small triangle: The edge in question is the shortest in its incident triangles
and the longest edge of its incident triangles is shorter than a given threshold S.

Relative small triangle: The longest edge in its incident triangles is shorter than a
fraction R of the longest edge in the mesh and also shorter than the desired edge
length l.

The process of edge contraction abides by this criterion to help optimize element
quality and consistency in size. The process of edge contraction occurs in increasing
order of edge lengths throughout the mesh. While the first two criteria help to remove
poor shaped triangles, the latter two criteria help to remove triangles that are too
small, preserving the overall mesh quality as it evolves. When contracting an edge,
its two incident vertices merge at a new location. To prevent mesh folding, we reject
any contractions that would lead to topological changes or an inversion of normals
on any triangle. Contracting the shortest edges first helps to avoid the need for such
rejections. These parameters and criteria abide by Jiao et al. [9].
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Preserving High-Order Accuracy

Just as mesh optimization, the mesh adaptation operations need to preserve the accu-
racy of the geometry. For edge splitting we first insert a new point onto an edge, and
then we project the point onto a high-order reconstruction based on WALF. For edge
contraction, we first replace the two vertices by a new point on the edge and then we
project the point onto a high-order reconstruction based on WALF.

Uniform Mesh Refinement

Besides using edge splitting, we can also uniformly subdivide the triangles into four
or ten triangles by inserting additional nodes to the edges and face centers. This
strategy is particularly useful for generating quadratic and cubic elements for high-
order finite element methods. We have explored this technique in [10], and readers
are referred to it for further detail.

4.2 Mesh Untangling by Smoothing and Edge Flipping

For robustness, we must handle mildly folded meshes. For clarity, we emphasize that
our untangling process attempts to resolve folded triangles of a smooth surface in a
local fashion, and it does not attempt to resolve global self-intersections of a surface.

We resolve mesh folding using a combination of weighted Laplacian smoothing
and edge flipping. In the weighted Laplacian smoothing, we move each vertex to-
ward a weighted average of the centroids of its incident triangles, where the weight
for each centroid is equal to distance from the vertex to the centroid. This is equiv-
alent to a weighted averaging of neighboring vertices, where the weight for each
vertex is equal to one third of the sum of the distances from the vertex to the cen-
troids of adjacent triangles. This weighted Laplacian smoothing does not produce as
good mesh quality as variational optimization. However, because it tends to move a
vertex to a weighted average of its one-ring neighborhood, repeatedly applying the
procedure tend to avoid mesh folding and even unfold a mesh. (This is the reason
why we refer to this step as mesh smoothing, instead of mesh optimization.) In addi-
tion, we found the weighting based on lengths is more effective to untangle a mesh
than using unweighted Laplacian smoothing.

Similar to variational optimization, when coupling the weighted Laplacian smooth-
ing with edge flipping. We also use two heuristics for edge flipping. The first is va-
lence improvement edge flipping, as we described above. The second criterion is
based on the angles:

Angle-Reduction Edge Flipping: Flip an edge if the sum of opposite angles is smaller
after flipping.

This criterion is equivalent to the Delaunay edge flipping condition in 2-D, so it can
help improve angles. Furthermore, this operation also tends to flip an edge of a folded
triangle. We perform angle-reduction edge flipping after mesh smoothing. Similar
to variational optimization, we perform valence improvement edge flipping before
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Fig. 3. Overview of the major steps in mesh optimization and untangling with high-order
surface reconstruction.

mesh smoothing, and perform angle-reduction edge flipping after mesh smoothing.
In addition, the vertices are projected onto high-order surface reconstruction after
mesh smoothing, to preserve the high-order accuracy. Note that during the algorithm,
we do not need to check explicitly whether individual triangles are folded. When sim-
ply repeatedly operations until the mesh is far from folding (namely, with 5 degrees).
Figure 3 shows the major steps involved in mesh optimization and untangling with
high-order surface reconstruction. We omit mesh refinement and coarsening in the
diagram for simplicity, as they can be performed in a separate step.

5 Numerical Experiments and Comparative Study

In this section, we demonstrate the accuracy of our proposed remeshing strategy, and
compare it with some other methods in the literature. Because the point positioning
for mesh smoothing and mesh adaption tend to use very different strategies in the
literature, we compare them separately. Our comparisons focus on the accuracy and
convergence of the results, because accuracy and convergence are often the ultimate
goals of numerical computations on meshes. For this reason, we use the same mesh
smoothing and mesh adaption techniques for all methods, and only change the way
how points are positioned.
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5.1 Effectiveness of Mesh Optimization

We first report some results of our optimizing technique. An example is given in
Fig. 1. In this case, the number of vertices is 1562, and the number of triangles is
3120, both before and after mesh optimization. The initial quadrilateral mesh was
generated from subdividing the quadrilaterals in a 40× 40 logically rectangular grid
in the θφ-domain of spherical coordinate system, which result in high-valence ver-
tices at the poles. Before optimization, the minimum and maximum angles were 3.2
and 140.6 degrees, respectively. After repeatedly performing variational mesh opti-
mization and edge flipping, the minimum and maximum angles were 29.9 and 109.1
degrees, respectively. We used quadratic fittings in the remeshing, so that the re-
sulting points are third-order accurate. When the normal and curvature computation
algorithms in [12] are used, the normal and curvature would be second- and first-
order accurate, respectively. Because of the high mesh quality and high accuracy, the
resulting mesh can be used for third-order generalized finite difference methods, and
also can be subdivided to generate quadratic elements for third-order finite elements
methods without producing any negative Jacobian. For even higher-order methods,
we can simply replace the quadratic fitting by cubic or higher order fittings in our
point-projection procedure.

5.2 Effectiveness of Mesh Untangling

One strength of our proposed methodology is the ability to untangle mildly folded
triangles. In the context of high-order mesh generation, we observe that occasion-
ally, even the small perturbation of projecting vertices onto the high-order surface
reconstruction can cause a few very poor-quality triangles (which may be present
in the initial mesh) to fold. To demonstrate the effectiveness of mesh untangling,
we construct a much more severe case: We start with a very poor-quality triangular
mesh for an ellipsoid mesh generated using marching cubes, randomly perturb the
vertices by up to the length of the background grid, and then project the perturbed
points back onto the ellipsoid. The initial mesh had 47 folded triangles, a few of
which were high-lighted in the left image in Fig. 4. The combination of poor mesh
quality, anisotropy of the geometry, and folded triangles makes the problem difficult
to handle by ad hoc techniques. After only three iterations, our method untangled the
mesh and produced a mesh with minimum angles of 18 degrees. After a few more
iterations, the mesh converged to a high-quality triangulation with a minimum angle
of 37.6 degrees and a maximum angle of 98.1 degrees, as shown in the right image in
Fig. 4. In addition, the surface normal and curvatures of the resulting mesh are still
accurate.

5.3 Numerical Accuracy with Mesh Optimization

We now report the orders of convergence for computing differential quantities (nor-
mal and mean curvature) of an optimized mesh. We use a torus (with inner radius
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(a) Initial mesh with folded triangles.
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(c) Angles of initial mesh.

(b) Untangled and optimized mesh.

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180
0

1000

2000

3000

4000

5000

6000

7000

Angles in degrees

T
o
ta

l 
an

g
le

 d
is

tr
ib

u
ti

o
n
 o

f 
th

e 
tr

ia
n
g
u
la

te
d
 s

u
rf

ac
e 

m
es

h

(d) Angles of optimized mesh.

Fig. 4. Example of untangling and optimization of a poor-quality surface mesh. The initial
mesh had 47 folded triangles (a few are highlighted in (a)) and a wide range of angles. After
optimization, the mesh had excellent mesh quality, accurate curvatures, and no folding.

0.7 and outer radius 1.3) and an ellipsoid (with semi-axes 1, 2, and 3) as test ge-
ometries. For each geometry, we first generated a set of poor-quality meshes using
marching cubes. These meshes were then optimized using our variational optimiza-
tion, smoothing and edge flipping techniques. Finally, the differential quantities were
computed at each vertex of the optimized meshes. For mesh convergence study, we
generated four meshes for each set of our test meshes, and numbered these meshes
from the coarsest (mesh 1) to the finest (mesh 4). The average edge lengths are ap-
proximately halved between adjacent mesh resolutions. Let v be the total number of
vertices. Let ñi and n̂i denote the computed and exact unit normal at the ith vertex,
and k̃i and ki denote the curvatures at the ith vertex, respectively. We estimate the
L∞ errors in normals and (mean or Gaussian) curvatures as

error in normal = max
i
‖ñi − n̂i‖ , error in curvature = max

i
|k̃i − ki|,

and compute the average convergence rate as

average convergence rate =
1

3
log2

(
error of mesh 1

error of mesh 4

)
.

In Fig. 5, the horizontal axis corresponds to the level of mesh refinement, and the
vertical axis corresponds to the L∞ errors in logarithmic scale. In the legends, the
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(a) L∞ errors in normals.
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(b) L∞ errors in mean curvatures.

Fig. 5. Errors and orders of convergence of normals and curvatures after mesh optimization
for an ellipsoid.

“degree” indicates the degree of polynomial fittings used for point projection during
mesh optimization. We show the average convergence rates along the right of the
plots for each curve.

Theoretically, the order of convergence of normal and mean curvature (which
are first and second order differential quantities) should be d and d− 1, respectively
for WALF reconstructed surface mesh using degree d polynomial fittings. Fig. 5
shows that the optimized meshes preserved the accuracy of the points and as a result
achieved the theoretical orders of convergence for the differential quantities.

5.4 Accuracy Comparison of Mesh Adaption

For mesh adaptation, a common approach is to keep the original mesh during mesh
smoothing/adaption, and project new vertices onto the faceted, piecewise linear ge-
ometries (see e.g., [6]). Such an approach has only second order accuracy. Another
approach taken by Frey [5] was to construct a G1 continuous surface using Walton’s
method [14], but our experiments have shown that Walton’s method is at most sec-
ond order accurate despite its G1 continuity. We compare between different point
projection methods for mesh adaption, namely,

1. Linear : Points are projected onto the linear triangle,
2. Walton’s method : Points are projects onto a G1 quartic patch [14], and
3. WALF : Points are projected onto WALF reconstructed surfaces with degrees

2, 3, and 4.
We use torus as a test geometry and compute the mean and Gaussian curvatures

of the adapted mesh using the mentioned point projection methods. Table 1 compares
the L∞ errors of mean curvatures and Gaussian curvatures for the adapted mesh of
a torus. It is evident that the mean curvatures did not converge in L∞ error for linear
reconstruction, and barely converged for Walton’s method, whereas it converged to
high order for WALF. The numbers of vertices of the three meshes are 544, 1896,
and 7528, respectively.
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6 Example Usage in Geometric PDEs

In the previous section, we verified our remeshing techniques through the compu-
tation of differential quantities. We now describe a usage of our techniques in the
numerical solutions of geometric partial differential equations. Such problems in
various applications, such as surface smoothing in computer-aided design [16] and
the modeling of moving surfaces of materials [2]. As an example, we consider the
solution of the mean-curvature flow over triangulated surfaces. The continuum for-
mulations of these problems are as follows. Given a moving surface Γ , the coordi-
nates x of points on Γ are functions of time t as well as some surface parametriza-
tion u = (u, v), which can be local instead of global parametrizations. Assume the
surface is differentiable. The mean-curvature flow is a second-order nonlinear PDE
modeling the motion of the surface driven by the mean curvature, given by

∂x

∂t
=M n̂, (5)

where M denotes the mean curvature and n̂ denotes the unit normal vector. The
vector n̂ involves first-order partial derivatives of x with respect to the parame-
ters u, whereas M involves second-order partial derivatives of x with respect to
u. We discretize the problem in space using the generalized finite difference scheme,
and discretize the equation in time using a semi-implicit scheme by evaluating the
second-order terms over the new time step and evaluating the first-order terms over
the current time step. As the surface evolves, the mesh may need to be adapted in
order to maintain good spacing between the points. Utilizing adaptivity during evo-
lution can help maintain mesh quality and ultimately increase the stability when
trying to further evolve the mesh. Fig. 6 shows a comparison with and without mesh
adaption for the evolution of an ellipsoid with semiaxes 1.5, 2, and 8. Without mesh
improvement, the points become overly crowded at the top of the ellipsoid, which

Table 1. L∞ errors and orders of convergence of mean curvature and Gaussian curvature on a
torus after mesh adaption using surface reconstructed based on WALF and other alternatives.

Method # of vertices mean curvature Gaussian curvature
Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2 Mesh 3

Linear L∞ error 0.6 0.35 0.83 2.29 1.64 3.09
Order n/a 0.77 -1.2 n/a 0.48 -0.91

Walton’s L∞ error 0.6 0.29 0.21 2.27 1.40 0.96
Order n/a 1 0.44 n/a 0.7 0.55

WALF deg 2 L∞ error 0.6 0.27 0.11 2.29 1.36 0.52
Order n/a 1.1 1.3 n/a 0.74 1.4

WALF deg 3 L∞ error 0.54 0.20 0.066 1.73 0.86 0.30
Order n/a 1.4 1.6 n/a 1 1.5

WALF deg 4 L∞ error 0.45 0.085 0.0074 1.24 0.28 0.03
Order n/a 2.4 3.5 n/a 2.2 3.3
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Fig. 6. Evolution of an initial mesh (left) of an ellipsoid under mean curvature flow. The center
and the right images show the top of the surface meshes after 0.14 seconds of evolution without
and with mesh adaption, respectively.

can severely undermine the time step requirement for the PDE solver. We optimize
and adapt the mesh using our technique, so that the mesh quality and the order of
accuracy are achieved simultaneously.

7 Conclusions

In this paper, we investigated the problem of remeshing a surface mesh to high-
order accuracy. We demonstrated that lower-order remeshing, which may preserve
the “shape” of the geometry, can destroy the order of accuracy or even convergence
of numerical computations. We describe a new remeshing strategy that can not only
substantially improve mesh quality, but also preserve the accuracy of the geometry to
high order. In addition, we showed that our technique ensures that high-order algo-
rithms for curvature computations on discrete surfaces still converge after remeshing,
whereas some commonly used techniques may cause non-convergence of computa-
tions after remeshing.

Our proposed technique has many potential scientific and engineering applica-
tions, especially those involving high-order methods for solving differential equa-
tions. An example is the solution of geometric partial differential equations with
moving meshes. As a potential future research direction, we plan to couple our
remeshing techniques with error estimations, to deliver error-based mesh adaption.
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